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Chemical Insights into Ginseng as a Resource for Natural

consist of ginsenosides, polyphenols, amino acids, and
polysaccharides. The chemistry, biosynthesis, analysis, and
tonic effects of ginsenosides were reviewed recently, and
anticarcinogenic, immunomodulatory, anti-inflammatory, anti-
allergic, antiatherosclerotic, antihypertensive, antidiabetic, anti-
stress, and anticancer activities of ginseng are due to the action
of ginsenosides.”

Environmental pollution deteriorates the living surroundings
and changes the redox status of healthy bodies,® leading to
aging and vital diseases consequently.” Maintaining health by
dietary intake is more important than treating diseases by drugs.
The supplementation of natural antioxidants is regarded as a
prophylactic strategy toward diseases caused by oxidative
stress.'”'" Much work focuses on the phytochemistry of
natural antioxidants such as polyphenolics,> phenylpropa-
noids,"® and other active components,l“'15 in which phenolics
attract much research attention because the phenolic hydroxyl
group is able to suppress reactive oxygen species (ROS) and
reactive nitrogen species (RNS). On the other hand, as the
major active component in ginseng, ginsenoside is a
dammarane- or oleanane-type tetracyclic triterpenoid sapoge-
nin linked by sugar moieties. The antioxidant action of ginseng
is an attractive research field that provides much information
for dietary supplementation and pharmacological usage of
ginseng products.

The pharmacological action of ginseng is related to the
abilities of ginsenosides to regulate enzyme expression;16 thus,
many more individual ginsenosides are needed for comparing
pharmacological activity and for exploring the structure—
activity relationships. Chemical techniques play an important
role in isolating and synthesizing various ginsenosides. As
shown in Figure 1, the aim of this review is to summarize
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1. INTRODUCTION

Ginseng is the root of Panax ginseng C. A. Meyer mainly
produced in China, Korea, and America. The first book
recording ginseng is Shennongbencaojing about 2000 years ago.l
The storage conditions and the amount of dietary intake of
ginseng are recored in the US pharmacopoeia.” Recent studies
reveal that ginseng has some novel pharmacological effects on
hypodynamia, anorexia, shortness of breath, palpitations,
insomnia, impotence, hemorrhage, and diabetes.> The total
extract from ginseng modulates calcium channels in pain and
opioid-induced antinociception* and reduces brain polyamine
levels in experimental animals.’ Ginseng predominantly
enhances cognitive performance and memory by modulating
cerebroelectrical activity.® The active components in ginseng
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chemical aspects of ginsenosides and to introduce some in vitro
results on the antioxidant actions of ginsenosides. The first
aspect is that appropriate cultivation can enrich the amount of
ginsenosides during the growth of ginseng. Hence, the
influence of the cultivation conditions and additives on the
accumulation of ginsenosides should be taken into consid-
eration. The second aspect is how to extract ginsenosides from
ginseng. Innovations in separation techniques are beneficial for
obtaining much more of a single ginsenoside and can be
employed in the isolation of ginsenoside-like compounds from
other plants. The third aspect is to identify the structure of
ginsenoside by mass spectra (MS) and nuclear magnetic
resonance (NMR) spectra. MS can be used to confirm the kind
of sugar moiety, while NMR gives information on the linkage
position of the sugar moiety. The fourth aspect is to synthesize
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Figure 1. The organization of this review.

ginsenosides via enzyme-promoted reactions or organic
reactions. Especially, the sugar moiety in a ginsenoside can
change its position in the presence of a special enzyme; thus,
one kind of ginsenoside converts into another one via enzyme-
catalyzed reaction. Finally, although a large number of research
proves that ginsenoside exhibits many pharmacological
activities, the mechanism is still not very clear because only a
few single ginsenosides are used in the same experimental
system, and it is difficult to clarify the influence of the sugar
moiety at different positions on pharmacological actions.
Therefore, in the research on pharmacological mechanisms of
ginsenosides, it seems not necessary to develop much more
experimental systems, but enough types of single ginsenosides
should be screened in the same experimental system. As a
result, much more information on the structure—activity
relationship can be obtained. In this review, some in vitro
experimental systems are introduced because these exper-
imental systems can be set up conveniently in an organic
laboratory. Thus, the activity of the obtained antioxidants can
be evaluated by using biological species. On the other hand, the
activities of some single ginsenosides have been evaluated in
these experimental systems. If many more single ginsenosides
are used in these experimental systems, some general principles
of ginsenoside activity against oxidative damage may be
clarified.

2. INFLUENCES OF THE CULTIVATION CONDITIONS
ON THE VALID COMPONENTS IN GINSENG

2.1. Structures of Representative Ginsenosides

Ginsenosides are various saponins with (20S)-protopanaxadiol
(PD) or (20S)-protopanaxatriol (PT) being sapogenins. Table
1 collects some typical structures of PD- and PT-type
ginsenosides. The sugar moieties attach to the 6- and 20-
positions in PT-type ginsenosides and the 3- and 20-positions
in PD-type ginsenosides. The differences of the position and
kind of sugar moieties lead to various bioactivities of
ginsenosides.'”

2.2. Comparison of Ginsenoside Contents under Different
Growth Conditions

The wild ginsengs are generally harvested after 8 or more years.
The pharmacological activity of wild ginseng is higher than that
of the cultivated ones because a large amount of ginsenosides is
accumulated during the long-term growth period. However,
short growth periods and growing location significantly affect
the ginsenoside contents. For example, the contents of
ginsenoside in American ginseng (Panax quinquefolium) are
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Rbl > Rgl > Re when wild and two-year-old ginsengs are
transplanted from population surrounding to forest garden.
The population surrounding affects the content of Re markedly,
followed by Rbl, Rc, and Rb2. Both population surrounding
and growing location attenuate the contents of Rgl and Rd.'
Furthermore, the light levels in the understory of a broadleaf
forest also affect the contents of Rgl, Re, Rb1, Rc, Rb2, and Rd
in one- and two-year-old American ginseng. The red and
infrared lights increase Rd, Rc, and Rgl 40% in two-year-old
ginseng.'® The geographic location affects the contents of
ginsenosides as well. The investigation of Panax notoginseng
cultivated in Yunnan Province, China, indicates that the
contents of R1, Rgl, Rbl, and Rd in Panax notoginseng
produced in the southwest of the Province and harvested in
autumn are higher than those from glants produced in other
areas and harvested in other seasons.”” The genetic sequences
of Panax notoginseng and ratios of Rd/Rgl, Re/Rgl, and Rb1/
Rgl are quite different even though Panax notoginseng are
harvested from the same farm in different years. The cultivation
conditions markedly influence the quality of ginseng.”'

2.3. Influence of CO, and Jasmonic Acid on Ginsenoside
Contents

Some chemicals, such as CO, and jasmonic acid (structure
shown in Figure 2), can increase the contents of ginsenosides
and other antioxidants. The addition of jasmonic acid markedly
increases ginsenoside content in a flask-type bioreactor and
does not influence the weight and growth rate of ginsengs.”*
The treatment of Panax notoginseng with 2-hydroxyethyl
jasmonate in a bioreactor increases the activities of proto-
panaxdiol 6-hydroxylase and Rd glucosyltransferase and
changes the ratios of Rb/Rg and Rb1l/Rd. Hence, jasmonic
acid is able to increase ginsenoside contents.”®

The treatment of Panax ginseng with different concentrations
of CO, in a bioreactor increases the contents of phenolics,
flavonoids, and proteins and the activity of the enzyme for the
biosynthesis of phenolics. This is because CO, activates the
pentose phosphate pathway and the shikimate/phenylpropa-
noid pathway to enrich phenolics and ginsenosides in Panax
ginseng.24 Moreover, CO, can induce the generation of
ascorbate peroxidase, monodehydroascorbate reductase, gluta-
thione reductase, catalase (CAT), guaiacol peroxidase, and
superoxide dismutase (SOD) and can enhance the activities of
glutathione-S-transferase and glutathione peroxidase in gin-
seng.25 Therefore, the cultivation conditions and the
application of chemicals directly affect the contents and kinds
of the active components in ginseng.

3. ISOLATION OF THE ANTIOXIDANT COMPONENTS
FROM GINSENG

The activities of total extracts from ginseng roots, flowers,
stems, and leaves are compared in order to find which part
contains a large amount of active components. For example, the
activities of antioxidants and quinone reductase of American,
Asian, and Siberian ginseng are compared, and American and
Asian ginsengs are found to reduce HOCI efficiently, while
Siberian ginseng can quench ONOO™ rapidly.>® However, it is
difficult to confirm which component mostly contributes to the
bioactivity in the case of total extracts employed. Therefore, it is
necessary to apply suitable solvents and novel techniques for
isolating various individual ingredients from ginseng. Although
the root of Panax ginseng C. A. Meyer is defined as ginseng, the
method of isolating ginsenosides from ginseng is also available
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Table 1. Structures of Some Typical Ginsenosides
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Figure 2. The structure of jasmonic acid.

for separating ginsenoside-related saponins from Panax
notoginseng, Panax quinquefolius, and Panax japonicus. Hence,

the following methods correlate with the extraction of
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dammarane- and oleanane-type tetracyclic triterpenoid sap-

onins from ginseng-related plants.

3.1. Solvents

Ginsenosides are fixed in ginseng cells that can be destroyed in

refluxing methanol within a few hours or in cool methanol for a
long period. After methanol is evaporated under vacuum, the
crude extract is dissolved in water, and the water phase is
washed by nonpolar organic solvents to remove fatty acid.
Then, water-saturated n-butanol and the mixture of chloroform

dx.doi.org/10.1021/cr100174k | Chem. Rev. 2012, 112, 3329—3355
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Figure 3. A typical process to isolate ginsenosides from flowers of Panax notoginseng.
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Figure 4. Structures of saponins with polysaccharide moieties.
and methanol are used to isolate individual ginsenosides. Figure applied to isolate saponins with polysaccharide moieties as
3 outlines a typical process to separate saponins from flower shown in Figure 4.”7%*
buds of Panax notoginseng. A reverse phase (RP) chromatog- Water, methanol, and ethanol are applied to extract freeze-
raphy column (CC) and a mixture of methanol and water are dried leaves of wild ginseng. The obtained mixture can trap 2,2-
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Figure S. Structure of pseudoginsenoside and some representative compounds isolated from Panax japonicus.
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Figure 6. Structures of F4, RgS, Rkl, and Rpl.

Rp1

diphenyl-1-picrylhydrazyl radical (DPPH) and hydroxyl radical
(*OH) and can chelate ferrous ion. The ethanol extract shows
the highest radical-scavenging and Fe2+-che1ating activities,
while aqueous extract has the highest activity to trap superoxide
radical. Flavonoid, quercetin, and kaempferol are generated
when the extracts are deglycosylated under acidic conditions.*
Therefore, a solvent with high polarity is appropriate for
extracting phenolics from ginseng. Although 65% glycerin
aqueous solution can also extract saponins from Panax
quinquefolius, the amount of the obtained saponins is obviously
lower than when 50% ethanol aqueous solution is the solvent
because ethanol can release ginsenosides effectively by
destroying ginseng cells, while glycerin cannot destroy ginseng
cells very well.*® Water-saturated n-butanol is able to isolate
pseudoginsenosides as shown in Figure 5.>' Compound F11, a
representative pseudoginsenoside isolated from American
ginseng, includes a tetrahydrofuran ring at the 20-position of
the sapogenin instead of a carbon chain.

Steam distillation is another useful way to destroy ginseng
cells. The contents of ginsenosides are measured when
American ginseng is steamed at 100—120 °C for 1 h or at
120 °C for 0.5—4 h. Consequently, the contents of Rgl, Re,
Rb1, Rc, Rb2, Rb3, and Rd decrease, while the contents of Rh1,
Rg2, Rg3, and Rh2 increase after steam distillation. In
particular, the amount of Rg3 reaches a maximum value
when ginseng is steamed at 120 °C for 2 h.** A large amount of
Rg3 and Rh2 is detected in the extract from boiling water rather
than from 80% ethanol aqueous solution at room temperature.
So, Rg3 and Rh2 are regarded as the heating products in the
process of the extraction.”® Heating may also lead to the
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dehydrolyzation of hydroxyl group at 20-position, producing
F4, RgS, Rkl, and Rpl (structures shown in Figure 6).

The abundant contents of Rg3, RgS, and F4 enhance abilities
of the corresponding ginseng extract to relax endothelium and
to trap 2,2-diphenyl-1-picrylhydrazyl radical (DPPH),** while
the content of arginine, the major amino acid in ginseng,
decreases from 10.4 to 1.38 mg/g after steam distillation. On
the other hand, steam distillation removes 92.9% of -N-oxalyl-
L-a,f-diaminopropionic acid that can cause crippling neuro-
1athyrism.3’5 Glutamine and arginine, two major free proteino-
genic amino acids in ginseng, can react with carbonyl groups in
sugar moieties to form Maillard reaction products (MRPs) with
antioxidant activities.>® The investigation on bioactivities of
ginsenosides is important for the clinic usage of ginseng-related
herbs®” and therefore requires much more advanced techniques
to be used in the separation of natural-occurring saponins from
ginseng.

3.2. Microwave Irradiation

Using microwave irradiation shortens the heating period in the
extraction of ginsenosides. In a microwave oven, ginseng
powders mixed with 10-fold volume of 80% methanol aqueous
solution are irradiated by 300 W microwave four times, each
time being less than 30 s. The same amount of ginseng powder
extracted in boiling methanol for 12 h provides a similar
amount of the obtained ginsenosides to that from microwave
irradiation. So, the microwave irradiation cannot cause the
decomposition of ginsenosides.”® With a condenser equipped
to avoid the evaporation of the solvent, the extraction period
may increase to 5 min each time, and the power of microwave
irradiation increases to 700 W. Figure 7 illustrates the structures

dx.doi.org/10.1021/cr100174k | Chem. Rev. 2012, 112, 3329—3355
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Figure 7. Structures of acetyl-astragalosides extracted from Radix
astragali under microwave irradiation.

of astragalosides extracted from Radix astragali under micro-
wave irradiation.® The microwave irradiation is still a thermal
extraction method and is thereby not suitable for the extraction
of heat-sensitive ginsenosides.

3.3. Sonication

Using ultrasonic vibration to extract ginsenosides avoids high
temperature, and the efficiency is three times higher than the
refluxing method.** The solvents and sonication conditions are
screened in the extraction of Rbl, Rb2, Re, Rd, Re, and Rgl
from American ginseng. The amount of the obtained
ginsenosides in 70% methanol aqueous solution under
sonication is higher than that in methanol at room temperature.
Especially, it is found that Rd is the most sensitive to heating,
followed by Rc and Rbl, while Rb2, Rgl, and Re are inert to
heating.*' Therefore, the application of ultrasonic vibration
avoids the decomposition of thermal-sensitive ginsenosides in
the process of the extraction.

3.4. Ultrahigh Pressure and Supercritical CO,

An apparatus with ultrahigh pressure is applied to extract
thermal-sensitive ginsenosides from American ginseng at room
temperature by using water, ethanol, methanol, and n-butanol
as solvents. It is found that 0.861% Rc can be extracted by
ethanol within 2 min when the pressure ranges from 100 to 600
MPa** As shown in Figure 8, ultrahigh pressure can be
obtained by mechanical press* or by boiling solvent in a sealed
autoclave.**

CO, can be liquified under 31 MPa at 35—60 °C, and this
supercritical state of CO, is usually used to extract natural
compounds because liquid CO, possesses high diffusivity and
low viscosity and surface tension. The liquid CO, can extract 73

and 108 mg of ginsenosides at 35 and 60 °C within 4 h. If the
ginseng roots are immersed in ethanol for 6 h in advance and
then extracted by liquid CO,, the amount of the obtained
ginsenosides increases to 800 and 1141 mg.** But the polarity
of CO, is not high enough to dissolve all ginsenosides, ethanol
is thereby applied to increase the polarity of the supercritical
CO,, and as a result, much more ginsenosides (2028 mg) can
be obtained. In addition, methanol and dimethyl sulfoxide
(DMSO) are usually used to modify the polarity of the liquid
CO, with the pressure ranging from 20.7 to 48.3 MPa. More
than 90% of ginsenosides can be extracted at 110 °C in the case
of four-times weight of organic solvent employed. However,
high temperature and organic solvent may change the structure
of the ginsenosides. For example, mono-O-acetyl Rbl is
detected when DMSO is used to modify liquid CO,. High
temperature and pressure may decompose DMSO to form an
acetyl source and subsequently lead to the acetylation product
of Rb1.* Therefore, some efficient biological methods are
developed to isolate single ginsenosides. For example, in
immunoaffinity column chromatography, the use of an
antiginsenoside Rbl monoclonal antibody can readily isolate
Rb1 from total extract of ginseng roots*” and from methanolic
extract of Araliaceous species.*® Thus, biological methods are
powerful ways to isolate a certain ginsenoside.

4. IDENTIFICATION OF GINSENOSIDES

NMR is generally used to confirm the linkage position of sugar
moieties on the sapogenin, and MS is applied to identify the
kind of sugar moieties. High-performance liquid chromatog-
raphy (HPLC) is used to measure the amount of ginsenoside.

4.1. NMR

"H NMR signals of ginsenoside range from 3 to 6 ppm, in
which hydrogen atoms of sapogenin and sugar moieties appear
as overlapping and splitting peaks. So, it is difficult to assign
which peak is derived from the hydrogen atom of sapogenin
and which from that of the sugar moiety. Acetylation of
hydroxyl groups in sugar moieties eliminates the corresponding
'H signals, leading to assignment of the '"H NMR signals of
sapogenin conveniently.*” The one-dimensional 'H NMR
spectrum cannot be applied to confirm the ginsenoside
structure directly, but some softwares can be employed to
treat complicated "H NMR spectra. For example, Chenomx

Release pressure
after the extraction ‘}0
Cylinder head
to seal the autoclave / % A
1 g ginseng powder
mixed with 50 mL

70% ethanol sealed
in a polyethylene bag

Ll
5 L water sealed \E
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Heating or
cooling circle

Thermocouple
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O

200 rpm stirring C ||

:%ﬂ
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and to collect samples
released from the autoclave

50 to 200 g ginseng powder
and 1000 mL water
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Figure 8. Mechanical (A) and continuous (B) ultrahigh pressure extraction apparatus.
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NMR Suite software (version 4.6, Chenomx Inc., Edmonton,
Canada) contains baseline correction and automatic phasing
algorithms, and SIMCA-P software (Umetrics, Kinnelon, NJ)
provides unsupervised principal component analysis (PCA) and
supervised partial least-squares discriminate analysis (PLS-DA)
in analyzing '"H NMR spectra. By use of the aforementioned
softwares, some metabolites including coumarate, fumarate,
glucose, and several amino acids are found. PCA and PLS-DA
are reliable analytical methods to confirm the quality of
commercial ginsengs.so On the other hand, *C NMR signals of
the sapogenin skeleton range from 15 to 70 ppm, while those of
sugar moieties range from 60 to 110 ppm. *C NMR signals of
the C=C in the sapogenin range from 120 to 130 ppm.>" So, it
is easy to tell the >*C NMR signals of sapogenin from those of
sugar moieties. Futhermore, some novel NMR techniques such
as 'H,'H-COSY, ROESY, heteronuclear multiple bond spec-
troscopy (HMBC), total correlation spectroscopy (*H,**C-
TOCSY), and heteronuclear single quantum coherence spec-
troscopy ('H,"*C-HSQC) reveal the long-range correlations
among hydrogen atoms or between hydrogen and carbon atom
from sapogenin and sugar moieties. As shown in Figure 9, two-
dimensional NMR spectra are applied to confirm the linkage
position of sapogenin and sugar moieties.>>

4.2. MS

The complicated m/z detected by MS cannot be readily
assigned to a concrete fragment deriving from ginsenoside.

3335

Advanced MS techniques, including electron impact MS, field
desorption ionization MS, liquid secondary ionization MS, and
liquid chromatography MS (LC/MS), are applied to identify
the structure of ginsenoside. An ion spray (IS, nebulizer gas-
assisted electrospray) technique in MS gives protonated or
deprotonated molecular anions of Rb1, Rb2, R¢, Rd, Re, Rf, and
Rgl. The further fragment ions of these molecular cations or
anions are analyzed by LC/MS/MS, and the kind of sugar
moiety can be confirmed by m/z of the fragment ion. Figure 10
outlines a fragmentation mode of Rc in the ion spray MS.*?

Gas chromatography (GC) equipped with electron impact
MS (EI/MS) and HPLC equipped with electrospray ionization
MS (ESI/MS) are applied to measure the molecular weights of
ginsenosides ionized by H*, Li*, Na*, NH,*, CH;COO~, Co*,
Ni**, and Zn?*>*™% followed by the analysis of the kind of
sugar moieties on the basis of m/z generated from the further
fragmentation. Moreover, the electrospray ionization multistage
tandem MS gives further fragment ions from the cleavage of
sugar moieties”” and the sapogenin skeleton.’® An energy
gradient neutral loss scan mode in a triple-quadrupole MS/MS
is better than a fixed-energy neutral loss scan mode, and thus,
glucuronides and sapogenins can be simultaneously detected in
the total extracts from medicinal herbs.>

4.3. HPLC

An ODS C; liquid chromatographic column and an ultraviolet
detector with the wavelength at 203 nm are general way to

dx.doi.org/10.1021/cr100174k | Chem. Rev. 2012, 112, 3329—3355
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Figure 11. Structures of falcarinol, panaxydol, and ginsenoside Ro.
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analyze ginsenosides. Acetonitrile aqueous solution acts as the
eluent with the volume ratio of acetonitrile increasing from 18%
to 55% or from 21% to 42% by a gradient program. R1 has the
shortest retention time, followed by Rgl, Re, Rf, Rb1, Rc, Rb2,
Rb3, and Rd in this case.” So, the majority of ginsenosides can
be isolated and detected under this condition.®’ Recently,
studies on the analysis of ginsenosides by HPLC mainly focus
on (1) the application of statistical methods to treat the
chromatographic peaks, (2) the selection of eluents to isolate
ginsenoside epimers, (3) the variation of the wavelength to
simultaneously detect more compounds in ginseng extracts, (4)
the application of MS as the detector for HPLC, and (S) the
development of biochemical methods to enrich a certain
ginsenoside before HPLC analysis.

The principal component analysis (PCA) reveals the
covariance and the correlation of ginsenoside distributions.®>
The partial least-squares (PLS) analysis predicts the antioxidant
activity of medicinal herbs from HPLC fingerprint peaks.®®
Meanwhile, the ratio of acetonitrile and water gradually
increases from 20:80 to 95:5 and then decreases to 20:80,
resulting in a complete isolation of Rb1, Rb2, Rb3, R¢, Rd, Re,
Rgl, Rg2, (20R)-Rg2, Rg3, Rhl, and Rh2 in an ODS C
column.”® An appropriate component in the eluent can even
isolate epimers of a single ginsenoside. For example, an eluent
containing methanol and 4% aqueous solution of H;PO,
(65:35, v/v, pH = S.1) is capable of isolating Rg2 into
(20R)-Rg2 and (20S)-Rg2.°® Furthermore, a photodiode array
(PDA) UV detector simultaneously emits light with wavelength
ranging from 200 to 600 nm. The mixture of CH;OH and H,0
ranging from 40:60 to 75:25 and 100:0 and then to 40:60
affords complete isolation of Rbl, Rb2, R¢, Rd, Re, Rgl, Ro,
malonyl-Rb1, malonyl-Rc, and malonyl-Rd as well as falcarinol
and panaxydol. As shown in Figure 11, the conjugative system
in falcarinol and panaxydol needs long wavelength of UV in the
detection, and PDA is capable of detecting these compounds
simultaneously® and obtaining three-dimensional UV spectra.
HPLC equipped with a fluorometric detector can carry out
simultaneous detection of amino acids and saponins including
baicalin, wogonin-7-O-glucuronide, liquiritin apioside, glycyr-
rhizin, saikosaponin bl and b2, Rgl and Rbl, 6-gingerol, 6-
shogaol, and arginine in medicinal herbs.”” HPLC equipped
with a pulsed amperometric detector can detect nonpolar
ginsenosides. The potential in the amperometric detector
ranges from —0.2 to +0.22 V or from —2.0 to +0.6 V along with
the variation of the concentration of acetonitrile in aqueous
solution, leading to the isolation of RgS, Rkl (structures in
Figure 6), and astragalosides (structures in Figure 7).°®

MS is the most sensitive detector of HPLC. In addition to
the electron impact MS and the electrospray ionization MS,
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atmospheric pressure chemical ionization (APCI), triple
quadrupole, ion trap (IT), Fourier transform ion cyclotron
resonance (FTICR), time-of-flight (TOF), and multistage MS
are able to control the fragmentation modes and, thus, are
widely employed to detect pharmacological®® and proteomic
components in ginseng,70 the metabolites of ginsenosides,71
and the amounts and kinds of ginsenosides in drugs’> and
beverages.”> Also, gas chromatography equipped with MS
(GC/MS) can be used to determine phenolics in ginseng after
the extracts are treated with trimethylsilyl chloride to form
evaporative derivatives.”*

Ginsenosides can be detected by other methods. Immu-
noaffinity using an antiginsenoside Rbl monoclonal antibody
can identify Rbl specifically.”> On a polyethersulfone
membrane, the chromatographic immunostaining method is
employed to determine Re with CH;OH/H,0/CH,COOH
(45:55:1, volume ratio) as the eluent.”® The enzyme-linked
immunosorbent assay (ELISA) and Western blotting method
are beneficial for the qualitative and quantitative measurement
of ginsenosides at trace level. The ELISA method decreases the
detectable limitation of PT from 50 pg/mL to 20 ng/mL.77
Finally, the aspects of analytical chemistry in the research of
ginseng are summed up as shown in Figure 12.

Different parts in ginseng

extract by different solvents

Application of GC-MS
to confirm the contents
of ginsenoside

Crude extracts

_.|

prepare evaporative derivatives

Some methods applied to enrich a certain ginsenoside
in order to be detected more sensitively

further isolation
by mixed solvents
with different polarity

Application of HPLC-UV
or HPLC-MS to confirm
the contents of ginsenoside

Provide information
for the detectation
in HPLC-MS

Obtain individual ginsenoside

Application of MS to confirm
the kind of sugar moieties

Application of NMR
to confirm the linkage position
of sugar moieties

Figure 12. A schematic summarization of the aspects of analytical
chemistry in the research of ginseng.

5. GINSENOSIDE-RELATED REACTIONS

The biological activities of saponins in medicinal plants have
been reviewed recently,78 and the in vitro culture technology is
a useful way to enrich active components artificially.”’
Meanwhile, organic synthesis still plays an important role in
the preparation and conversion of ginsenosides. In particular,
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Figure 16. f-Glucosidase isolated from Fusarium proliferatum ECU2042 to convert Rg3 into Rh2.

enzyme-promoted reaction is an efficient way to synthesize
ginsenoside and helps us to understand the metabolism process
of ginsenosides. The reactions on ginsenosides include
deglycosylation, glycosylation, sugar moiety-related reactions,
and the synthesis of sapogenin.

5.1. Deglycosylation

An in vitro gastro-intestinal tract model is used to investigate
the metabolites of ginsenosides. As shown in Figure 13, the
bioconversion of ginsenosides involves a series of deglycosy-
lations.*® The determination of metabolites of Rb1 formed by
microbe and rat reveals that the in vivo conversion of Rb1l may
follow the process as shown in Figure 14.*" The process shown
in Figures 13 and 14 indicates that the sugar moieties at the 20-
position are deglycosylated more readily than those at other
positions, and the hydroxyl group at the 20-position is also
readily dehydrolyzed to form C=C. The hydroxyl group at the
3-position can be oxidized to form carbonyl group, whereas, the
hydroxyl group at the 12-position is inert to oxidation and
dehydrolyzation.

Some efforts are contributed to find a special enzyme for the
deglycosylation at a certain position of ginsenoside. A f-
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glucosidase (G-II) isolated from the phytopathogenic fungus
Cladosporium fulvum (syn. Fulvia fulva) can specifically cleave
the glycoside linkage between two f-glucose moieties at the 20-
position in Rb1 to form Rd (see the conversion from Rb1 to Rd
in Figure 14) but cannot deglycosylate other f-p-glucosidic
linkages in PD-type ginsenosides.”* Ginsenosidase type II
isolated from Aspergillus sp. g48p strain exhibits high selectivity
to cleave the linkage between polysaccharide at the 20-position
in PD-type ginsenosides. This enzyme can only deglycosylate
20-0O-f-glucoside in Rbl, 20-O-fB-xyloside in Rb3, and 20-0-a-
arabinoside in Rb2 and Rc, forming Rd and a little of Rg3
eventually. However, this enzyme is not active toward other
sugar moieties in Rbl, Rb2, Rb3, and Rc and cannot hydrolyze
the sugar moieties at the 20-position of PT-type ginsenosides
such as Re, Rf, and Rgl. Hence, ginsenosidase type II is a
specific enzyme for removing the terminal sugar moiety at the
20-position of PD-type ginsenosides.> The deglycosylation
routines of ginsenosides largely depend upon the kind of
enzyme even though the structure of the enzyme is not clear. In
general, enzymes are characterized by the isolation procedure
and molecular weight. For example, three enzymes named GI,
G2, and G3 are isolated from ginseng pathogen Pythium
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irregulare by the precipitation in acetone, the enrichment on
polybuffer exchanger, the filtration on Sephacryl S-200 HR gel
column, and the anion exchange on Q Sepharose chromatog-
raphy column in turn. The analysis of molecular weight
indicates that G1 is likely a homodimer of 78 kDa subunits,
while G2 and G3 are two monomeric enzymes of 61 and 57
kDa, respectively. These enzymes can deglycosylate the
terminal monosaccharide from disaccharides at the 3- or 20-
position of Rbl, R¢, Rb2, and Rd to yield ginsenoside F2 as the
final product.** Figure 15 outlines the pathways of Rb1 to form
F2 catalyzed by G1 and G2/3 or the inverse order.*®> The G1
enzyme specifically deglycosylates the terminal sugar moiety
from the 20-position, while the G2/3 enzymes just
deglycosylate the terminal sugar moiety from the 3-position
of PD-type ginsenoside.

A microbial strain GS514 isolated from soil around ginseng
roots can convert Rbl into Rg3 by deglycosylating disaccharide
at the 20-position in Rb1 with Rd being the intermediate.*® As
shown in Figure 16, pB-glucosidase isolated from Fusarium
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proliferatum ECU2042 can deglycosylate the terminal glucose
moiety at the 3-position in Rg3 to form Rh2.*’

As shown in Figure 17, naringinase deglycosylates
disaccharides at the 3-position and the terminal glucose moiety
at the 20-position of Rbl to form compound K.** A study on
the cleavage of the glycosidic bond in Rgl, Rbl, and Ro
indicates that glucoside at both 20- and 6-positions can be
thoroughly deglycosylated by NaOH or CH;0Na in n-butanol
under oxygen or air, but the deglycosylation does not occur
when oxygen or air is replaced by nitrogen. Thus, the
antioxidant effectiveness of ginsenosides may be ascribed to
the cleavage of sugar moieties in the presence of oxygen.* In
the presence of the intestinal bacteria, the deglycosylation of
sugar moieties at the 3-, 6-, or 20-position is the first step in the
metabolism process of ginsenoside.

5.2. Glycosylation and Sugar Moiety-Related Reactions

The reaction between the hydroxyl group at the 3-position of
dammarane-type sapogenin with acetylized glycosyl bromide

dx.doi.org/10.1021/cr100174k | Chem. Rev. 2012, 112, 3329—3355
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affords Rg3”® and Rh2°! as shown in Figure 18. The hydroxyl anosyl bromide to produce the precursor of Rg3 or Rh2. Then,
group at the 12-position in sapogenin is acetylized to form 12/-
acetoxy-dammar-24-en-3/3,20S-diol, which can react with hepta-
O-acetyl-a-sophorosyl bromide or tetra-O-acetyl-a-p-glucopyr- reactivities of hepta-O-acetyl-a-sophorosyl bromide and tetra-

Rg3 and Rh2 are generated after deacetylization. The
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O-acetyl-a-p-glucopyranosyl bromide toward the hydroxyl
group at the 3-position are higher than that at the 20-position.

As shown in Figure 19, octanoyl chloride can react with
—CH,OH in glucose of Rhl to form an ester because the
reactivity of the primary alcoholic group is higher than that of
other types of hydroxyl groups. The monoester of Rh1 inhibits
murine H22 hepatoma cells more efficiently than Rhl itself
because the long carbon chain is beneficial for monoester of
Rh1 to transport into the cell membrane.”” The esterification
by fatty acid increases the lipophilicity of ginsenoside, resulting
in good uptake in vivo.”?

In novozyme 43S lipase-catalyzed esterification of Rbl, an
acyl reagent with a short carbon chain gives higher yield than
one with a long carbon chain in tert-amyl alcohol. But low yield
is obtained when the esterification takes place in the mixture of
t-butanol and pyridine (1:1, v/v). This enzyme cannot catalyze
regioselective esterification of a specific hydroxyl group in Rbl,
but the yield reaches 61% when vinyl decanoate reacts with Rb1
at 53 °C for 40 h in tert-amyl alcohol. Actually, the
aforementioned synthesis condition is obtained by response
surface methodology (RSM) analysis and, then, is proven by
the experimental operation.”* Although Rgl has two —CH,OH
in glucose moieties, lipase B isolated from Candida antarctica
shows high regioselective activity and only catalyzes the
transesterification between —CH,OH in the glucose moiety
at the 6-position and vinyl acetate in tert-amyl alcohol to
produce monoester of Rgl. As shown in Figure 20, Rgl reacts
with bis(2,2,2-trichloroethyl) malonate in the presence of lipase
B, followed by the reduction via Zn/CH;COOH to form 6"-O-
carboxyacetyl Rgl.”

As shown in Figure 21, -(1,4)-galactosyltransferase (GalT)
isolated from bovine colostrums can catalyze the glycosylation
of 4-OH in the glucose moiety at the 6- and 20-positions in Rgl
when uridine diphosphate glucose (UDP-glucose) acts as the
glucose donor. The 4-OH in the glucose moiety at the 6-
position in F1, Rh1, and Re can also be glycosylated under the
same experimental conditions.”® Furthermore, as shown in
Figure 22, Rd glucosyltransferase (UGRAGT) catalyzes Rd to
produce Rb1 when UDP-glucose acts as the glucose donor.””
Therefore, the regioselection in the glycosylation of ginsenoside
largely depends upon the kind of enzyme.

As shown in Figure 23, the glycosylation of oleanolic acid by
using  4,6-di-O-acetyl-2-O-(2-0-2-(azidomethyl)benzoyl)-3-O-
benzoyl-p-glucopyranosyl trifluoroactetimidate (AABBG) pro-
duces Ro at the total yield of 28%.”® This method may be
employed in the glycosylation of other sapogenins.
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As shown in Figure 24, the immunostaining technique
enhances the sensitivity and specificity in the analysis of
ginsenoside by thin layer chromatography (TLC)."* The TLC
plate is made of polyvinylidene difluoride (PVDF) with bovine
serum albumin (BSA) adhereing on the surface. The oxidation
of NalO, breaks the C—C bond in glucose moiety to form
aldehyde groups that can condense with -NH, in BSA. As a
result, the ginsenoside is fixed on the surface of PVDF. Then,
the sapogenin part in the ginsenosides is immunostained by
antiginsenoside Rbl or antiginsenoside Rgl monoclonal
antibodies (MAbs).”” The cleavage of C—C in sugar moieties
under NalO, is the key step although it cannot be confirmed
which C—C bond is broken in the glucose moieties.

5.3. Sapogenin-Related Reactions

As shown in Figure 25, hydroxylation occurs in PD to form
eight products in the presence of fungus Mucor spinosus AS
3.3450, which can also specifically oxidize the hydroxyl group at
the 12-position in PD to form a carbonyl group.'"

As shown in Figure 26, the skeleton of dammarane can be
synthesized via the cyclization of 2,3-oxidosqualene catalyzed
by various specific enzymes. Cycloartenol synthase, dammar-
enediol-II synthase, and f-amyrin synthase are able to catalyze
the cyclization of squalene to form the sapogenin of
ginsenoside.'”> Squalene derivatives provide all the carbon
atoms in the sapogenin skeleton, and some specific enzymes
drive a successive transfer of m-electrons to form the
triterpenoid skeleton.'®®

6. ACTIVE COMPONENTS IN GINSENG

Figure 27 illustrates the essential role of in vivo oxidation in
aging and some fatal diseases.'®* In vivo oxidation provides the
energy for life and, meanwhile, generates many reactive oxygen
and nitrogen species that cause oxidative stress. Oxidative stress
changes the chemical components of lipid, membrane, DNA,
and protein, inactivates enzymes, and degrades the central
nervous system (CNS).'” Since antioxidant therapy has
become a popularly acceptable concept, nutritional and
medicinal plants are applied to inhibit harmful oxidations.'*
In particular, the effects of ginseng extracts on tumors and
diabetes have been widely investigated because these two
diseases correlate directly with the oxidative damage. Presented
here are the antioxidant properties of ginsenosides including
apoptosis of tumor cells, inhibition of diabetes and neuron
degradation, and reaction with free radicals.
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Figure 23. Synthetic routines of Ro.

6.1. Effects on Cells and Diseases

Chemical carcinogens (structures in Figure 28), biological
issues, and irradiation initiate the proliferation of tumor cells in
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an in vitro experimental system. The addition of antioxidants

causes apoptosis of these tumor cells.'"”” Table 2 lists some
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typical studies on the activities of total extracts, individual
ginsenosides, and sapogenins.

As can be seen in Table 2, the aforementioned works consist
of mainly initiators and cell lines in the research of
carcinogenesis. The initiators involve chemical carcinogens,
radicals, irradiations, and cytotoxins. The use of total extract
just gives an overall effect of ginseng on tumor cells. It is
difficult to identify which ingredient in ginseng inhibits the
proliferation of tumor cells. Some researches emphasize the
solvent applied to extract ginseng because a certain solvent is
beneficial for dissolving a certain kind of component in ginseng.
For example, methanolic extract of ginseng cannot stimulate
the formation of tumor necrosis factor-a (TNF-a) in rat
alveolar macrophages, but water extract exhibits high activity.
Because methanol mainly extracts ginsenosides and water
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mainly extracts polysaccharide, the formation of TNF-a is
mainly ascribed to the polysaccharide.''? It is better to compare
the bioactivity of individual ginsenosides in the same
experimental system. For example, Rh1 and Rgl were applied
to hinder human breast cancer cells (MCF-7). Rh1 induces the
responsive genes of es.trogen,141 and Rgl increases the
expression of insulin growth factor I receptor (IGF-IR),
which can mediate the signaling pathways in MCE-7."** The
individual ginsenosides are employed to suppress the secretion
of catecholamines from bovine adrenal chromaffin cells
stimulated by acetylcholine (ACh). PT-type ginsenosides are
more efficient than PD-type ones in this case."*’ Hemin can
cause hemolysis of erythrocytes by accelerating the potassium
leakage, dissociating skeletal proteins, and prohibiting some
enzymes in erythrocyte membrane. As shown in Figure 29, the
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protective activities of mixed ginsenosides (total), twelve
individual ginsenosides, and PD and PT are compared in
hemin-induced hemolysis of human erythrocytes.'** PT-type
ginsenosides together with PT itself possess similar anti-
hemolysis activities (66—79%) as that of the mixed ginseno-
sides (74%). For PD-type ginsenosides, Rc has the highest
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activity (55%), followed by Rd, Rbl, and Rb3, but the
corresponding sapogenin, PD, promotes hemolysis (106%).
Meanwhile, Rh2 and Rg3 increase hemolysis percentages to
152% and 222%, respectively. Rg3 can initiate hemolysis
(130%) even in the absence of hemin. By comparison of
ginsenoside structures, the antihemolysis effects of Rc (55%),

dx.doi.org/10.1021/cr100174k | Chem. Rev. 2012, 112, 3329—3355
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Table 2. In Vitro Experimental Models for Evaluating the Active Components in Ginseng

initiators

xanthine-xanthine oxidase, 12-O-
tetradecanoylphorbol-13-acetate, and
photolysis of H,O,

12-O-tetradecanoylphorbol-13-acetate and
7,12-dimethyl benz[a]anthracene

aflatoxin B, and fumonisin

lipopolysaccharide
lipopolysaccharide
lipopolysaccharide

Cdcl,

7,12-dimethyl benz[a]anthracene

12-O-tetradecanoylphorbol-13-acetate and
H,0,

H,0,
tert-butyl hydroperoxide

D-galactosamine

y-ray radiation
y-ray radiation
cyclophosphamide
cytokine

serum deprivation

thioacetamide
transforming growth factor-f1

gut ischemia/reperfusion

acetylcholine (ACh)

hemin
collagen

hypoxia/reoxygenation
2,2',5,5"-tetrachlorobiphenyl

cell lines

human promyelocytic leukemia cells (HL-60)

and strand scission in ¢)X174 supercoiled
DNA

HL-60 cells and papilloma

precancerous lesions in female Sprague—
Dawley rats

liver injury in rats

rat alveolar macrophages

microcirculatory disturbance in rat mesentery

hepatic injury in Swiss albino mice
skin papillomagenesis in Swiss albino mice
rat liver epithelial cell (WB-F344)

human umbilical cord vein endothelial cells
liver injury (HepG2 cells)
primary cultured mouse hepatocytes

human lung cancer cells (NCI-H460)
apoptosis of rat intestinal epithelial cells

apoptosis of mouse bone marrow cells and

peripheral lymphocyte cells
apoptosis of pancreatic f-cells (MIN6NS)
apoptosis of human endothelial cells
fibrosis of hepatic stellate cells

fibrosis of rat renal tubular epithelial cells
(NRK-52E)

liver fibrosis and hepatic microvascular
dysfunction in rats

secretion of catecholamines from bovine
adrenal chromaffin cells

hemolysis of erythrocytes
platelet aggregation

injury of rat cardiomyocyte
human neuroblastoma (SK-N-MC) cells
human neuroblastoma (SK-N-SH) cells

adult and neonatal rat cardiomyocytes

guinea pig ventricular myocytes

human colorectal cancer cells (HCT116 and
SW480)

human colon cancer cells (HCT116 parental
and p21)

human breast cancer cells (MCEF-7)
human carcinoma cells (KBV20C)

human colorectal cancer (SW-480) cells

osteosarcoma cells (MG-63)
human leukemia cells (THP-1)
human glioma (SF188 and US7MG) cells

human pancreatic cancer cells

human prostate cancer LNCaP and PC3 cells,

and mouse PC3 xenograft tumor

human mammary gland carcinoma cells
(MDA-MB-435)

active components

methanol extract of heat-treated ginseng

Rg3
water extract of Korean ginseng

methanol extract of heat-treated ginseng
polysaccharide and Rbl

Rbl, Rgl, R1

total extract of ginseng

Rpl

Rb2 and epicatechin

(205)-Rg2, PT
compound K, Rbl, Rb2, Rc

Rbl, Rb2, Re, Rd, Re, Rgl, Rhi, Rhs, R25, R1, R2,
RT4, R10, Rh4, PT oxide II

compound K
Rd
total extract of ginseng

total extracts of red and white ginseng
(205)-Rg3

Rgl

Rgl

water extract of ginseng

RbI, Rb2, Rb3, Re, Rd, Re, R, Rgl, Rg2, Rg3, Rhi,
Rh2, Ro, Rsl, PD, PT, and the metabolites of
ginsenosides

Rbl, Rb3, Re, Rd, Re, Rgl, Rg2, Rg3, Rhl, Rh2, R1,
F11, PD, and PT

total extracts of raw and steamed Panax notoginseng,
ginseng, and quinquefolium

Rgl

water extracts of red ginseng

Rb1, Rb3, R4, Fa

total extracts of American, Indian, Siberian, and Asian
ginseng

total extract of ginseng, Re

70% ethanol aqueous solution extract of steamed
American ginseng

water extract of ginseng, polysaccharides

RhI, Rgl

Rg3

Rb1, Rb2, Rb3, Re, Rd, Re, Rgl, Rg2, Rg3, Rhl, Rh2,
(20R)-Rg2

Rgl, cinnamic acid, and tanshinone IIA

PD, PT, Rhl, Rh2, Rg3

PD

25-hydroxyl or 25-methoxy substituted PD

25-hydroxyl substituted PD and PT

sapogenin of F11 and its derivatives

ref

108

109
110

111
112
113
114
115
116

117,118
119
120

121
122
123

124
125
126
127

128

129-131

132

133

134
135
136
137

138
139

140

141,142
143
144

145
146
147
148
149

150

Rd (59%), and Re (66%) may be ascribed to sugar moieties at
3- (or 6-) and 20-position simultaneously. Furthermore, the
absence of sugar moieties at the 20-position makes Rh2, Rg3,
and Rhl strongly induce apoptosis of human leukemia cells
(THP-1)."* The destroying effect of Rh2 on membrane is
applied to hinder lipid rafts in the membrane of HeLa cells,
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position in Rg3 on the bioactivity is clarified clearly.'®

causing apoptosis of these cells.'>" These works largely focus on
the abundant components of individual ginsenoside such as the
Rg and Rh series; the influence of the chiral carbon at the 20-

2

Diabetes is another disease caused by oxidative stress and the

lack of antioxidants and is an experimental model to evaluate

dx.doi.org/10.1021/cr100174k | Chem. Rev. 2012, 112, 3329—3355
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Figure 29. Hemin (4.0 yM)-induced hemolysis of human erythrocytes
(1.0%, v/v in phosphate buffered saline (PBS)) is inhibited by 20.0
M ginsenosides and PD and PT except Rh2 and Rg3. Rh2 and Rg3
(20.0 uM) cause hemolysis of erythrocytes (1.0%, v/v in PBS) as 4.0
4uM hemin.'**

the antioxidant activity. Table 3 collects some diabetes-related
experimental models together with some other oxidative stress-
induced diseases. The functions of ginseng components are
evaluated by measuring various biochemical indexes.

As can be seen in Table 3, total extract of ginseng is usually
employed in animal-related experiments. The complicated
isolation process makes individual ginsenosides too expensive
for the large consumption in the in vivo experiments. Although
the amounts of various individual ginsenosides in total extract
can be identified by HPLC, it cannot definitely point out which
ginsenoside plays the major role in treating diseases. Thus, it is
important to compare the activities of individual ginsenosides
in the same experiment in order to reveal the in vivo mechanism
of ginsenoside. For example, when the obese mice are fed
various individual ginsenosides, it is found that Rb1, Rb2, R,
and Rd inhibit pancreatic lipase efficiently, while Rgl and Re
cannot.'® This finding implies that sugar moieties at both the
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3- and 20-positions in PD-type ginsenoside are active to
decrease pancreatic lipase, while sugar moieties at the 6- and
20-positions in PT-type ginsenoside do not exhibit this
bioactivity.

6.2. Effects on Nervous System

Ginseng can prevent aging, disorders of the central nervous
system (CNS), imbalance of nitric oxide (NO),"”! and
neurotoxicity.'”> Table 4 lists some typical studies of
ginsenosides in the CNS.

The experimental materials include bronchial and cerebral
arterial strips and canine corpus cavernosum. Acetylcholine
(ACh), acrylamide, prostaglandin, nicotine, electricity, and UV
light cause the contraction of experimental materials.'>"7+'%”
The contents of NO, cyclic adenosine monophosphate
(cAMP), and cyclic guanosine monophosphate (cGMP) are
measured in the presence of the total extract of ginseng and
individual ginsenosides. Or, some chemical or biological factors
are applied to cause oxidative stress of neurocytes and to
attenuate neurological functions. The usage of the total extract
of ginseng and individual ginsenosides can inhibit the
aforementioned damages. For example, PC12 cells, primary
astrocytes, mesencephalic or spinal cord neuron cultures, and
hippocampal CAl neurons are exposed to H,0,, dopamine,
*OH, glutamate, and 1-methyl-4-phenylpyridinium ion or
stimulated by epidermal growth factor and cerebral ischemic
reperfusion factor. The application of ginsenosides can modify
the biochemical indices of middle cerebral artery occlusion of
male Wistar—Kyoto rats, Alzheimer of SAMP8 mice, and
acrylamide-fed Sprague—Dawley rats. Dietary supplementation
of total extract of ginseng or individual ginsenosides improves
the biochemical indices of these experimental animals. The
mechanism of ginsenosides in protecting neural systems can be
summarized on the basis of experimental results from individual
ginsenosides applied. For example, the antiamnestic and
antiaging effects of Rgl and Rbl are due to increased
expression of brain derived neurotrophic factor, BCL-2, and
antioxidant enzyme, to form new synapses and to inhibit
apoptosis and calcium overload."”® Total extract of ginseng
inhibits N-methyl-p-aspartate (NMDA)-induced increase of
intracellular [Ca?*] in cultured hippocampal neurons.'”’!
Moreover, Rg3 inhibits NMDA receptor by increasing the
concentration of glycine'®> and attenuates homocysteine-
induced excitotoxicity.'”®> The components of p-N-oxalyl-L-
a,p-diaminopropionic acid, y-aminobutyric acid, glutamine, and
arginine are the neuroexcitatory compounds in old ginsengs.'”*
If more individual ginsenosides are employed in the same
experimental system and more neuroexcitatory compounds are
found in ginseng, the mechanism of ginsenosides toward neural
system will be further clarified.

6.3. Effects on Radicals

The radical-induced oxidations of lipids, membranes, DNA, and
proteins are proven to be chemopathogenesis in aging'”® and
some fatal diseases.'”*'”” Much work focuses on the expression
of oxidative damage,198 the determination of antioxidant
levels,”® and the designation of antioxidants.”®® The high
activity to trap radicals implies that the antioxidant may be a
candidate as a chemopreventive drug.’*" The radical-scavenging
properties of ginseng extracts and individual ginsenosides are
collected in Table S.

As can be seen in Table 5, water extract is usually used to
determine the radical-scavenging properties of ginseng. Tissue-
cultured adventitious roots of ginseng with poly(ethylene

dx.doi.org/10.1021/cr100174k | Chem. Rev. 2012, 112, 3329—3355
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glycol and linoleic or a-linolenic acids™ in a biorector
exert high antioxidant capacity because much more ginseno-
sides and phenolics are enriched by the culture treatment. The
tissue-culture treatment together with oxygen or Cu’’
employed can enhance the activities of glucose-6-phosphate
dehydrogenase, shikimate dehydrogenase, cinnamyl alcohol
dehydrogenase, and phenylalanine ammonia lyase, and increase
the amount of phenolics, flavonoids, cysteine, and non-protein
thiol in ginseng roots. As a result, the ability of ginseng extract
to trap DPPH increases about 76%.”*>*** *OH usually acts as
the radical resource in screening the radical-scavenging
properties of ginseng extract. The extract from red ginseng
exhibits higher ability to trap *OH than that from white ginseng
when *OH is measured by ESR with S,5-dimethyl-1-pyrroline-
N-oxide (DMPO) being the spin labeling agent. The high
ability of red ginseng is due to abundant contents of (20S)-Rg3,
(20R)-Rg3, Rkl, and RgS produced by heating original ginseng
to form red glnseng Moreover, Rb1 can convert into (20S)-
Rg3, (20R)-Rg3, Rkl, and RgS in the heating process. (20S)-
Rg3 and RgS play the main role in scavenging *OH, while
(20R)-Rg3 and Rkl only show weak activities toward *OH. In
addition, Maillard reaction products (MRPs) formed between
Rbl and glycme in the heating process have high ability to
scavenge *OH.*"” Re cannot trap DPPH because no hydrogen
atom in Re can be abstracted by N-centered radical.”*® Also, the
protective effect of water extract from ginseng on DNA against
radiation- 1nduced damage is better than that of individual
ginsenosides,”** and the radical-scavenging property of total
extract from glnseng 1s ascribed to free or esterified phenolics
and polysaccharides.”"* It is found that white ginseng contains a
similar amount of phenolic acids (27.2 mg/100 g) to the red
ginseng (26.8 mg/100 g).**

The antioxidant capac1t1es of total extract of ginseng and 11
individual glnsen051des, '® as well as corresponding sapogenins,
PD, and PT,*" have been compared in 2,2"-azobis(2-
amldmopropane) dihydrochloride (AAPH)-induced hemolysis
of human erythrocytes. Rbl, Rb3, Rc, Rd, Rg3, and Rh2 are
typical PD-type ginsenosides, and Rh1, Rgl, Rg2, R1, and Re
are typical PT-type ginsenosides. As shown in eq 1, AAPH

NH;
ﬁ><N/ ><KNH *2HCI
AAPH
=(1.4£02)X10° [AAPH] 5! 5 HN 00
37°C. 0, C N (D
’ NH,
(ROO")

provides peroxyl radical (ROO®) with a stable rate (R,) via
decomposition at 37 °C and is often used as peroxyl radical
resource in the oxidations of LDL>*® and erythrocytes.””’
Figure 30 outlines the effects of the mixtures of PD- or PT-
type ginsenosides on AAPH-induced hemolysis of human
erythrocytes. The mixture of PD-type ginsenosides protects
erythrocytes against AAPH-induced hemolysis effectively with
increasing concentration, and the mixture of PT-type ginseno-
sides exhibits a completely reverse result. However, both PD
and PT promote hemolysis with increasing concentration,
indicating that the sapogenins of PD- and PT-type ginsenosides
play a prooxidant role in this case. Furthermore, the effects of
various individual ginsenosides on AAPH-induced hemolysis
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Figure 30. The effects of the mixtures of PD- or PT-type ginsenosides
together with PD and PT on AAPH-induced hemolysis of human
erythrocytes. Erythrocytes were suspended in PBS (3.0%, v/v), and 40
mM AAPH was added at 37 °C for 3 h.**

are illustrated in Figure 31.*'" In addition to Rh2 and Rg3,
other individual ginsenosides prevent hemolysis concentration-
dependently. The absence of sugar moieties at the 20-position
makes Rh2 and Rg3 promote hemolysis with increasing
concentration. In contrast, the absence of sugar moieties at
the 20-position does not affect Rg2 and Rhl to prevent
hemolysis, demonstrating that sugar moieties at the 6- and 20-
positions make PT-type ginsenosides inhibit AAPH-induced
hemolysis.

Further research deals with the process of ginsenosides in
inhibiting AAPH-induced hemolysis. Figure 32 outlines a
typical hemolysis process in the presence of various
concentrations of Rbl. The blank experiment shows that
hemolysis does not take place immediately when AAPH is
added to erythrocytes suspension. The endogenous antioxidant
systems protect erythrocytes against the attack from radicals to
generate an inhibition period (f,;).”** The t,, increases with
the concentration of Rb1, and the relationships between t;,;, and
concentrations of Rb1 along with other individual ginsenosides
are illustrated in Figure 33. Rc and Rbl inhibit AAPH-induced
hemolysis in a concentration-dependent manner. Rb1 contains
a sucrose moiety at the 3- and 20-positions; Rc contains a
sucrose moiety at the 3-position and a xylosylglucose moiety at
the 20-position. Hence, disaccharide moieties at the 3- and 20-
positions enhance the ability of ginsenosides to protect
erythrocytes. The protective effects of other ginsenosides on
erythrocytes do not increase with the concentration. PD-type
ginsenosides including Rb3, Rh2, Rd, and Rg3 and PT-type
ginsenosides including Rgl and Rhl even improve the
hemolysis with the increase of their concentrations, while Re
is inert in this case.

7. CONCLUSION AND PERSPECTIVES

It is widely accepted that maintaining health is more important
than treating diseases. Not only does botanical dietary intake
supplement necessary nutrition, but the antioxidant compo-
nents potentially reinforce the endogenous antioxidant systems.
In the case of quality assurance and strict standardization
control, ginseng may be a dietary supplementation in the
future.”* But the following aspects still need investigating.

(1) The conditions that affect the accumulation of
antioxidant components in ginseng during the cultivation
should be further clarified by analyzing ginsenosides,

dx.doi.org/10.1021/cr100174k | Chem. Rev. 2012, 112, 3329—3355
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Figure 31. The effects of various individual ginsenosides on AAPH-induced hemolysis of human erythrocytes. Erythrocytes were suspended in PBS

(3.0%, v/v), and 40 mM AAPH was added at 37 °C for 3 h.*"’

% 904 Rbl
2
=]
5 60/
G
°
L
éo 304 1., increases with
8 0 the concentration
g Tt / of RbI
T lnh\ T T T
0 100 200 300 400

Incubation period (min)

Figure 32. The relationship between the percentage of hemolysis and
concentration of Rbl in AAPH-induced hemolysis of human
erythrocytes. The concentration of Rbl is 0, 5, 10, 15, 20, and 25
UM (from the left line to the right one), respectively. The
concentrations of AAPH and erythrocytes are 39 mM and 2.4% (v/
v in PBS).>'®
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Figure 33. The relationship between the concentration of individul
ginsenosides and inhibition time, t;, in AAPH-induced hemolysis of
human erythrocytes. The concentrations of AAPH and erythrocytes
are 39 mM and 2.4% (v/v in PBS), respectively.”'®.

phenolics, and polysaccharides. Meanwhile, improvement
of analysis and isolation technique helps us to obtain
more ginsenosides and novel antioxidants in ginseng.
Many more synthetic studies on the construction of
sapogenin, glycosylation, and deglycosylation should be
carried out chemically and biochemically because these
synthetic works can provide a large amount of a certain
ginsenoside for special pharmacological action.

)

3351

(3) The systematic comparison of the activities of various
individual ginsenosides in the same biological exper-
imental system will clarify the influence of the position
and the kind of sugar moiety on the bioactivity. The
mutual effects among different components in ginseng
should also be explored since the pharmacological
actions of ginseng are not the simple sum of various
components.

Based on the detailed results from all the investigation aspects,
it is reasonable to believe that ginseng will be not only a
medicinal herb to treat diseases but also a resource of natural
antioxidants to maintain health.
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